翻訳と辞書 |
Coxeter matroid : ウィキペディア英語版 | Coxeter matroid In mathematics, Coxeter matroids are generalization of matroids depending on a choice of a Coxeter group ''W'' and a parabolic subgroup ''P''. Ordinary matroids correspond to the case when ''P'' is a maximal parabolic subgroup of a symmetric group ''W''. They were introduced by , who named them after H. S. M. Coxeter. give a detailed account of Coxeter matroids. ==Definition==
Suppose that ''W'' is a Coxeter group, generated by a set ''S'' of involutions, and ''P'' is a parabolic subgroup (the subgroup generated by some subset of ''S''). A Coxeter matroid is a subset of ''W''/''P'' that for every ''w'' in ''W'' contains a unique minimal element with respect to the ''w''-Bruhat order.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Coxeter matroid」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|